Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2711-2723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281192

RESUMO

Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.


Assuntos
DNA , Histona Desacetilases , Fatores de Transcrição MEF2 , Proteínas Repressoras , DNA/química , DNA/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Humanos , Histona Desacetilases/química , Histona Desacetilases/metabolismo
2.
Science ; 381(6659): 799-804, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590348

RESUMO

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Assuntos
Canais Iônicos , Fatores de Regulação Miogênica , Humanos , Microscopia Crioeletrônica , Células HEK293 , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Doenças Linfáticas/genética , Mutação , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Domínios Proteicos , Mioblastos/metabolismo , Animais , Camundongos
3.
Artigo em Inglês | MEDLINE | ID: mdl-31255700

RESUMO

Myogenic regulatory factor 4 (MRF4) is a basic helix-loop-helix (bHLH) transcription factor that plays crucial roles in myoblast differentiation and maturation. Here, we report the isolation of the olive flounder (Paralichthys olivaceus) mrf4 gene and the spatiotemporal analysis of its expression patterns. Sequence analysis indicated that flounder mrf4 shared a similar structure with other vertebrate MRF4, including the conserved bHLH domain. Flounder mrf4 contains 3 exons and 2 introns. Sequence alignment and phylogenetic analysis showed that it was highly homologous with Salmo salar, Danio rerio, Takifugu rubripes, and Tetraodon nigroviridis mrf4. Flounder mrf4 was first expressed in the medial region of somites that give rise to slow muscles, and later spread to the lateral region of somites that give rise to fast muscles. Mrf4 transcript levels decreased significantly in mature somites in the trunk region, and expression could only be detected in the caudal somites, consistent with the timing of somite maturation. Transient expression analysis showed that the 506 bp flounder mrf4 promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.


Assuntos
Proteínas de Peixes/genética , Linguado/genética , Músculos/metabolismo , Fatores de Regulação Miogênica/genética , Regiões Promotoras Genéticas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Desenvolvimento Embrionário , Proteínas de Peixes/química , Linguado/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Regulação Miogênica/química , Especificidade de Órgãos
4.
Dev Biol ; 448(2): 210-225, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365920

RESUMO

Electroporation-based assays were used to test whether the myogenic regulatory factor (MRF) of Ciona intestinalis (CiMRF) interferes with endogenous developmental programs, and to evaluate the importance of its unusual N-terminus for muscle development. We found that CiMRF suppresses both notochord and endoderm development when it is expressed in these tissues by a mechanism that may involve activation of muscle-specific microRNAs. Because these results add to a large body of evidence demonstrating the exceptionally high degree of functional conservation among MRFs, we were surprised to discover that non-ascidian MRFs were not myogenic in Ciona unless they formed part of a chimeric protein containing the CiMRF N-terminus. Equally surprising, we found that despite their widely differing primary sequences, the N-termini of MRFs of other ascidian species could form chimeric MRFs that were also myogenic in Ciona. This domain did not rescue the activity of a Brachyury protein whose transcriptional activation domain had been deleted, and so does not appear to constitute such a domain. Our results indicate that ascidians have previously unrecognized and potentially novel requirements for MRF-directed myogenesis. Moreover, they provide the first example of a domain that is essential to the core function of an important family of gene regulatory proteins, one that, to date, has been found in only a single branch of the family.


Assuntos
Ciona intestinalis/genética , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculos/metabolismo , Notocorda/embriologia , Notocorda/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Relação Estrutura-Atividade
5.
BMC Genomics ; 17(1): 1008, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931190

RESUMO

BACKGROUND: Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. RESULTS: In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. CONCLUSIONS: It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expressional pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function.


Assuntos
Ritmo Circadiano/genética , Fibras Musculares Esqueléticas/metabolismo , Percas/genética , Sequência de Aminoácidos , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , China , Ritmo Circadiano/fisiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Percas/metabolismo , Alinhamento de Sequência
6.
PLoS One ; 9(3): e92873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651579

RESUMO

The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.


Assuntos
Família Multigênica , Fatores de Regulação Miogênica/genética , Seleção Genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteína MyoD/química , Proteína MyoD/genética , Fator Regulador Miogênico 5/química , Fator Regulador Miogênico 5/genética , Fatores de Regulação Miogênica/química , Miogenina/química , Miogenina/genética , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Vertebrados/classificação
7.
Nat Immunol ; 14(10): 1084-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23974956

RESUMO

MEF2B encodes a transcriptional activator and is mutated in ∼11% of diffuse large B cell lymphomas (DLBCLs) and ∼12% of follicular lymphomas (FLs). Here we found that MEF2B directly activated the transcription of the proto-oncogene BCL6 in normal germinal-center (GC) B cells and was required for DLBCL proliferation. Mutation of MEF2B resulted in enhanced transcriptional activity of MEF2B either through disruption of its interaction with the corepressor CABIN1 or by rendering it insensitive to inhibitory signaling events mediated by phosphorylation and sumoylation. Consequently, the transcriptional activity of Bcl-6 was deregulated in DLBCLs with MEF2B mutations. Thus, somatic mutations of MEF2B may contribute to lymphomagenesis by deregulating BCL6 expression, and MEF2B may represent an alternative target for blocking Bcl-6 activity in DLBCLs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Proteínas de Domínio MADS/genética , Mutação , Fatores de Regulação Miogênica/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Ciclo Celular/genética , Proliferação de Células , Análise por Conglomerados , Biologia Computacional , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Camundongos , Simulação de Acoplamento Molecular , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Ligação Proteica , Conformação Proteica , Proto-Oncogene Mas , Sumoilação/genética , Transcrição Gênica
8.
Development ; 140(15): 3156-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23824577

RESUMO

The Jelly belly (Jeb)/Anaplastic Lymphoma Kinase (Alk) signalling pathway regulates myoblast fusion in the circular visceral mesoderm (VM) of Drosophila embryos via specification of founder cells. However, only a limited number of target molecules for this pathway are described. We have investigated the role of the Lame Duck (Lmd) transcription factor in VM development in relationship to Jeb/Alk signal transduction. We show that Alk signalling negatively regulates Lmd activity post-transcriptionally through the MEK/MAPK (ERK) cascade resulting in a relocalisation of Lmd protein from the nucleus to cytoplasm. It has previously been shown that downregulation of Lmd protein is necessary for the correct specification of founder cells. In the visceral mesoderm of lmd mutant embryos, fusion-competent myoblasts seem to be converted to 'founder-like' cells that are still able to build a gut musculature even in the absence of fusion. The ability of Alk signalling to downregulate Lmd protein requires the N-terminal 140 amino acids, as a Lmd(141-866) mutant remains nuclear in the presence of active ALK and is able to drive robust expression of the Lmd downstream target Vrp1 in the developing VM. Our results suggest that Lmd is a target of Jeb/Alk signalling in the VM of Drosophila embryos.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Regulação Miogênica/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Quinase do Linfoma Anaplásico , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes de Insetos , Sistema de Sinalização das MAP Quinases , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Desenvolvimento Muscular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
9.
Genes Dev ; 27(11): 1247-59, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23723416

RESUMO

Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.


Assuntos
Processamento Alternativo , Diferenciação Celular/genética , Músculos/citologia , Músculos/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Fatores de Transcrição MEF2 , Camundongos , Músculos/enzimologia , Mutação/genética , Fatores de Regulação Miogênica/química , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
10.
Nucleic Acids Res ; 40(12): 5378-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22396528

RESUMO

Enzymes that modify the epigenetic status of cells provide attractive targets for therapy in various diseases. The therapeutic development of epigenetic modulators, however, has been largely limited to direct targeting of catalytic active site conserved across multiple members of an enzyme family, which complicates mechanistic studies and drug development. Class IIa histone deacetylases (HDACs) are a group of epigenetic enzymes that depends on interaction with Myocyte Enhancer Factor-2 (MEF2) for their recruitment to specific genomic loci. Targeting this interaction presents an alternative approach to inhibiting this class of HDACs. We have used structural and functional approaches to identify and characterize a group of small molecules that indirectly target class IIa HDACs by blocking their interaction with MEF2 on DNA.Weused X-ray crystallography and (19)F NMRto show that these compounds directly bind to MEF2. We have also shown that the small molecules blocked the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of those targets. These compounds can be used as tools to study MEF2 and class IIa HDACs in vivo and as leads for drug development.


Assuntos
Anilidas/química , Anilidas/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Fatores de Regulação Miogênica/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular , DNA/química , Células HeLa , Histona Desacetilases/análise , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição MEF2 , Modelos Moleculares , Fatores de Regulação Miogênica/química
11.
Br Poult Sci ; 52(4): 423-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21919569

RESUMO

1. The objective of the research was to investigate the molecular evolutionary relationships between the duck myogenic determination factors (MYOD) gene family members and their roles in muscle development. 2. The four members of the duck MYOD gene family were cloned using RT-PCR, and their relative mRNA expression during duck muscle development was measured using qRT-PCR. 3. The results showed that MyoD and Myf5 clustered together, as did MyoG and MRF4 based on their complete amino acid sequence and the basic helix-loop-helix domain. Results of the evolutionary level analysis were consistent with that of the differential expression patterns during duck breast muscle development. As determined by qRT-PCR, MyoD and Myf5 were highly expressed in 22-day embryos, while MyoG and MRF4 expression was high in 14-day embryos. 4. We conclude that the entire MYOD gene family in the duck originated from a common ancestral gene and evolved after two duplication events. The roles of the MYOD gene family members in duck muscle development are similar to those in mammals.


Assuntos
Proteínas Aviárias/genética , Patos/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Fatores de Regulação Miogênica/genética , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Clonagem Molecular , Patos/crescimento & desenvolvimento , Patos/fisiologia , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Fatores de Regulação Miogênica/química , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência do Ácido Nucleico
12.
Yi Chuan ; 33(9): 975-81, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-21951798

RESUMO

As one of the members of MADS family, MEF2 group is important in regulating development. Analytical tools of NCBI, ExPASy, CBS, CDD, and SABLE were adopted to analyze the properties of human MEF2 proteins, and evolutionary tree was built according to the result of correlative sequence alignments. The results showed that there are various forms of MEF2 in human body, and there are some differences in the physicochemical characteristics. Relatively more phosphorylation sites are found and the main glycosylation sites are N-glycosylation sites. All MEF2 proteins of human contain MADS domain, and most contain MEF2 domain and HJURP_C domain. Their secondary structures contain three dominant states: helix, sheet and coil, their tertiary structures are similar. The phylogenetic tree result shows that MEF2B may be original because of its difference of sequences and evolutional relation.


Assuntos
Biologia Computacional/métodos , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas de Domínio MADS/classificação , Proteínas de Domínio MADS/genética , Fatores de Transcrição MEF2 , Dados de Sequência Molecular , Fatores de Regulação Miogênica/classificação , Fatores de Regulação Miogênica/genética , Filogenia , Homologia de Sequência de Aminoácidos
13.
PLoS One ; 6(3): e17334, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21394201

RESUMO

BACKGROUND: The myocyte enhancer factor 2 (MEF2) gene family is broadly expressed during the development and maintenance of muscle cells. Although a great deal has been elucidated concerning MEF2 transcription factors' regulation of specific gene expression in diverse programs and adaptive responses, little is known about the origin and evolution of the four members of the MEF2 gene family in vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: By phylogenetic analyses, we investigated the origin, conservation, and evolution of the four MEF2 genes. First, among the four MEF2 paralogous branches, MEF2B is clearly distant from the other three branches in vertebrates, mainly because it lacks the HJURP_C (Holliday junction recognition protein C-terminal) region. Second, three duplication events might have occurred to produce the four MEF2 paralogous genes and the latest duplication event occurred near the origin of vertebrates producing MEF2A and MEF2C. Third, the ratio (K(a)/K(s)) of non-synonymous to synonymous nucleotide substitution rates showed that MEF2B evolves faster than the other three MEF2 proteins despite purifying selection on all of the four MEF2 branches. Moreover, a pair model of M0 versus M3 showed that variable selection exists among MEF2 proteins, and branch-site analysis presented that sites 53 and 64 along the MEF2B branch are under positive selection. Finally, and interestingly, substitution rates showed that type II MADS genes (i.e., MEF2-like genes) evolve as slowly as type I MADS genes (i.e., SRF-like genes) in animals, which is inconsistent with the fact that type II MADS genes evolve much slower than type I MADS genes in plants. CONCLUSION: Our findings shed light on the relationship of MEF2A, B, C, and D with functional conservation and evolution in vertebrates. This study provides a rationale for future experimental design to investigate distinct but overlapping regulatory roles of the four MEF2 genes in various tissues.


Assuntos
Sequência Conservada/genética , Evolução Molecular , Fatores de Regulação Miogênica/genética , Homologia de Sequência de Aminoácidos , Vertebrados/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Genoma/genética , Proteínas de Domínio MADS/genética , Fatores de Transcrição MEF2 , Camundongos , Modelos Genéticos , Fatores de Regulação Miogênica/química , Fases de Leitura Aberta/genética , Filogenia , Estrutura Terciária de Proteína , Seleção Genética
14.
Nucleic Acids Res ; 39(10): 4464-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278418

RESUMO

Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure of a ternary complex of the p300 TAZ2 domain bound to MEF2 on DNA at 2.2Å resolution. The structure reveals three MEF2:DNA complexes binding to different sites of the TAZ2 domain. Using structure-guided mutations and a mammalian two-hybrid assay, we show that all three interfaces contribute to the binding of MEF2 to p300, suggesting that p300 may use one of the three interfaces to interact with MEF2 in different cellular contexts and that one p300 can bind three MEF2:DNA complexes simultaneously. These studies, together with previously characterized TAZ2 complexes bound to different transcription factors, demonstrate the potency and versatility of TAZ2 in protein-protein interactions. Our results also support a model wherein p300 promotes the assembly of a higher-order enhanceosome by simultaneous interactions with multiple DNA-bound transcription factors.


Assuntos
DNA/química , Proteínas de Domínio MADS/química , Fatores de Regulação Miogênica/química , Fatores de Transcrição de p300-CBP/química , Sítios de Ligação , Humanos , Fatores de Transcrição MEF2 , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas
15.
Mol Endocrinol ; 25(1): 157-69, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084379

RESUMO

Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2 expression. Here, we demonstrate the exclusive expression of CRFR2, and not CRFR1, in mature SM tissue using RT-PCR and ribonuclease protection assays and report a differential expression of CRF receptors during C2C12 myogenic differentiation. Whereas C2C12 myoblasts exclusively express CRFR1, the C2C12 myotubes solely express CRFR2. Using cAMP luciferase assays and calcium mobilization measurements, we further demonstrate the functionality of these differentially expressed receptors. Using luciferase reporter assays we show a differential activation of CRFR promoters during myogenic differentiation. Transfections with different fragments of the 5'-flanking region of the mCRFR2ß gene fused to a luciferase reporter gene show a promoter-dependent expression of the reporter gene and reveal the importance of the myocyte enhancer factor 2 consensus sequence located at the 3'-proximal region of CRFR2ß promoter. Furthermore, we demonstrate that CRFR2 gene transcription in the mature mouse is stimulated by both high-fat diet and chronic variable stress conditions. Performing a whole-genome expression microarray analysis of SM tissues obtained from CRFR2-null mice or wild-type littermates revealed a robust reduction in retinol-binding protein 4 expression levels, an adipokine whose serum levels are elevated in insulin-resistant states. In correlation with the SM CRFR2ß levels, the SM retinol-binding protein 4 levels were also elevated in mice subjected to high-fat diet and chronic variable stress conditions. The current findings further position the SM CRFR2 pathways as a relevant physiological system that may affect the known reciprocal relationship between psychological and physiological challenges and the metabolic syndrome.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Região 5'-Flanqueadora/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Regulação para Cima/genética
16.
Hum Mutat ; 31(6): 722-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20513142

RESUMO

The etiology of mental retardation remains elusive in the majority of cases. Microdeletions within chromosomal bands 5q14.3q15 were recently identified as a recurrent cause of severe mental retardation, epilepsy, muscular hypotonia, and variable minor anomalies. By molecular karyotyping we identified two novel 2.4- and 1.5-Mb microdeletions of this region in patients with a similar phenotype. Both deletions contained the MEF2C gene, which is located proximally to the previously defined smallest region of overlap. Nevertheless, due to its known role in neurogenesis, we considered MEF2C as a phenocritical candidate gene for the 5q14.3q15 microdeletion phenotype. We therefore performed mutational analysis in 362 patients with severe mental retardation and found two truncating and two missense de novo mutations in MEF2C, establishing defects in this transcription factor as a novel relatively frequent autosomal dominant cause of severe mental retardation accounting for as much as 1.1% of patients. In these patients we found diminished MECP2 and CDKL5 expression in vivo, and transcriptional reporter assays indicated that MEF2C mutations diminish synergistic transactivation of E-box promoters including that of MECP2 and CDKL5. We therefore conclude that the phenotypic overlap of patients with MEF2C mutations and atypical Rett syndrome is due to the involvement of a common pathway.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Deficiência Intelectual/genética , Proteínas de Domínio MADS/genética , Mutação de Sentido Incorreto , Fatores de Regulação Miogênica/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , DNA/química , DNA/metabolismo , Análise Mutacional de DNA , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/patologia , Cariotipagem , Luciferases/genética , Luciferases/metabolismo , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Masculino , Modelos Moleculares , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Síndrome
17.
J Mol Biol ; 397(2): 520-33, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20132824

RESUMO

Myocyte enhancer factor 2 (MEF2) regulates specific gene expression in diverse developmental programs and adaptive responses. MEF2 recognizes DNA and interacts with transcription cofactors through a highly conserved N-terminal domain referred to as the MADS-box/MEF2 domain. Here we present the crystal structure of the MADS-box/MEF2 domain of MEF2A bound to DNA. In contrast to previous structural studies showing that the MEF2 domain of MEF2A is partially unstructured, the present study reveals that the MEF2 domain participates with the MADS-box in both dimerization and DNA binding as a single domain. The sequence divergence at and immediately following the C-terminal end of the MEF2 domain may allow different MEF2 dimers to recognize different DNA sequences in the flanking regions. The current structure also suggests that the ligand-binding pocket previously observed in the Cabin1-MEF2B-DNA complex and the HDAC9 (histone deacetylase 9)-MEF2B-DNA complex is not induced by cofactor binding but rather preformed by intrinsic folding. However, the structure of the ligand-binding pocket does undergo subtle but significant conformational changes upon cofactor binding. On the basis of these observations, we generated a homology model of MEF2 bound to a myocardin family protein, MASTR, that acts as a potent coactivator of MEF2-dependent gene expression. The model shows excellent shape and chemical complementarity at the binding interface and is consistent with existing mutagenesis data. The apo structure presented here can also serve as a target for virtual screening and soaking studies of small molecules that can modulate the function of MEF2 as research tools and therapeutic leads.


Assuntos
DNA/metabolismo , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Fatores de Transcrição MEF2 , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
Genetics ; 183(1): 107-17, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564485

RESUMO

Temperature-sensitive (TS) mutations are a useful tool for elucidating gene function where a gene of interest is essential at multiple stages of development. However, the molecular mechanisms behind TS alleles vary. TS mutations of the myogenic regulator Myocyte enhancer factor-2 (MEF2) in Drosophila arise in the heteroallelic combination Mef2(30-5)/Mef2(44-5). We show that the 30-5 mutation affects the N-terminal MADS domain, causing impaired DNA binding ability and failure of homozygous mutants to survive to adulthood. The 44-5 mutation deletes a downstream splice acceptor site and results in a truncated protein that is unable to activate MEF2 targets. 44-5 homozygotes consequently show severely impaired myogenesis and die as embryos. We propose that in heteroallelic mutants at the permissive temperature, 30-5/44-5 heterodimers form and have a sufficiently stable interaction with DNA to activate myogenic gene expression; at the restrictive temperature, 44-5 homodimers displace 30-5/44-5 heterodimers from target genes, thus acting in a dominant-negative manner. To test this, we show that 30-5/44-5 heterodimers can form, and we study additional Mef2 alleles for complementation with the 30-5 allele. An allele affecting the DNA binding domain fails to complement 30-5, whereas two alleles affecting downstream residues show temperature-dependent complementation. Thus, by combining one MEF2 isoform having weakened DNA binding ability with a second truncated MEF2 mutant that has lost its activation ability, a TS form of intragenic complementation can be generated. These findings will provide new insight and guidance into the functions of dimeric proteins and how they might be engineered to generate TS combinations.


Assuntos
Drosophila melanogaster/genética , Músculos/embriologia , Mutação/fisiologia , Fatores de Regulação Miogênica/genética , Temperatura , Alelos , Animais , Células Cultivadas , DNA/metabolismo , Dimerização , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição MEF2 , Modelos Biológicos , Músculos/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/metabolismo , Fatores de Regulação Miogênica/fisiologia , Fenótipo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína/genética
19.
FEBS J ; 276(14): 3770-83, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523114

RESUMO

The cytoplasmic and nuclear protein Ki-1/57 was first identified in malignant cells from Hodgkin's lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki-1/57 in human cells remains to be determined. Here, we investigated the relationship of Ki-1/57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki-1/57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki-1/57 was able to bind to a poly-U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki-1/57 can modify the splicing site selection of the adenoviral E1A minigene in a dose-dependent manner. Further confocal and fluorescence microscopy analysis revealed the localization of enhanced green fluorescent proteinKi-1/57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N-terminal region. In summary, our findings suggest that Ki-1/57 is probably involved in cellular events related to RNA functions, such as pre-mRNA splicing.


Assuntos
Fatores de Regulação Miogênica/metabolismo , Precursores de RNA/genética , Splicing de RNA , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Peso Molecular , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina
20.
Mol Cell Biol ; 29(12): 3355-66, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19364819

RESUMO

The myocyte enhancer factor 2 (MEF2) transcription factors play important roles in neuronal, cardiac, and skeletal muscle tissues. MEF2 serves as a nuclear sensor, integrating signals from several signaling cascades through protein-protein interactions with kinases, chromatin remodeling factors, and other transcriptional regulators. Here, we report a novel interaction between the catalytic subunit of protein phosphatase 1alpha (PP1alpha) and MEF2. Interaction occurs within the nucleus, and binding of PP1alpha to MEF2 potently represses MEF2-dependent transcription. The interaction utilizes uncharacterized domains in both PP1alpha and MEF2, and PP1alpha phosphatase activity is not obligatory for MEF2 repression. Moreover, a MEF2-PP1alpha regulatory complex leads to nuclear retention and recruitment of histone deacetylase 4 to MEF2 transcription complexes. PP1alpha-mediated repression of MEF2 overrides the positive influence of calcineurin signaling, suggesting PP1alpha exerts a dominant level of control over MEF2 function. Indeed, PP1alpha-mediated repression of MEF2 function interferes with the prosurvival effect of MEF2 in primary hippocampal neurons. The PP1alpha-MEF2 interaction constitutes a potent locus of control for MEF2-dependent gene expression, having potentially important implications for neuronal cell survival, cardiac remodeling in disease, and terminal differentiation of vascular, cardiac, and skeletal muscle.


Assuntos
Proteínas de Domínio MADS/metabolismo , Fatores de Regulação Miogênica/metabolismo , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , Expressão Gênica , Células HeLa , Humanos , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Fatores de Transcrição MEF2 , Modelos Biológicos , Dados de Sequência Molecular , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA